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Abstract. An algorithm for constructing canonical forms for any tensor representation of 
the classical compact Lie groups is given. This method is used to find a complete list of 
the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric 
representations of U( n), SU( n )  and SO( n) for n < 7 .  A simple canonical form is also given 
for kth-rank symmetric tensor representations. 

1. Introduction 

Spontaneous symmetry breaking in quantum field theory is often described by the 
Higgs mechanism. In this formalism a set of scalar fields 4 transform as some 
representation vG of the gauge group G ( a  compact Lie group). From these fields the 
Higgs potential V (  4) is constructed which is required to have the following properties: 

(i) V ( 4 )  is a polynomial in the components of 4 of degree at most four, 
(i i)  Vg EG, V(g- 4)  = V(d), so V ( 4 )  is G invariant, 
(iii) V ( 4 )  is bounded from below, 
(iv) V(4) has a local maximum at 4 = 0. 
The tree-level broken symmetry group is then the little group of the absolute 

This mechanism has been used extensively in grand unified theories to produce 
minimum of V (  4). 

the desired pattern of symmetry breaking, 

G+ SU(3) x SU(2) x U( 1) + SU(3) x U ( l )  (1.1) 
or possibly some variation involving intermediate stages. Despite this fact there are 
few explicit results for the possible symmetry breaking patterns even in the case when 
vG is irreducible. The vector, adjoint and second-rank tensor representations were 
dealt with by Li (1974) and third-rank antisymmetric tensors have been discussed by 
Cummins and King (1984) and Jetzer et a1 (1984). In addition certain representations 
have been investigated in a search for a counterexample to Michel’s conjecture (Michel 
1979). In particular the 75 of SU(5) (Abud et a1 1984, Cummins and King 1985, 
Hubsch er a1 1984) and the 27 of SU(3) (Burzlaff er a1 1985) have received attention. 
Other results included the SU(3) x U(1) minimum of the 45 of SU(5) by Eckert et a1 
(1983). 

In the work of both Li (1974) and Burzlaff et a1 (1985) use was made of canonical 
forms for the representations under consideration. This considerably reduced the 
calculation involved in minimising the potentials. In this paper a method of construct- 
ing simple canonical forms for any tensor representation is given in § 2, and this method 
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is then applied in 0 3 to find all the symmetry breaking patterns produced by Higgs 
fields in the third-rank totally antisymmetric representations of U( n), SU( n) and SO( n) 
for n s 7.  A proof of the algorithm is provided in an appendix. 

2. Canonical forms 

The canonical forms of the vector, adjoint and second-rank representations of U( n), 
SU( n )  and SO( n )  are well known and are given for completeness in table 1. Using 
these forms Li (1974) found all the possible symmetry breaking patterns produced by 
these representations, and it thus seems natural to seek a generalisation of these forms 
to other representations. 

To simplify the following results the notation of Abud and Sartori (1983) is adopted, 
and the reader is referred to this paper for further details. Note though that any 
representation of a compact Lie group may be realised as a real orthogonal matrix 
representation acting on R" for some suitable n. 

The inner product on R" will be denoted by 

(4, + ) = E  4i+i, 4, + E R "  
I 

and the action of G on R" will be written 

Table 1. The canonical forms for the fundamental, second-rank, adjoint and kth-rank 
symmetric tensor representations of U ( n ) ,  S U ( n )  and S O ( n ) .  We have used the notation 
of S functions to specify the representations; for more details see Wyboume (1970) or 
Cummins and King (1986) .  

Group Representation Dimension Canonical form 

lJ( n )  111 n &,ER 

= 0 otherwise 

+zJ = 0 otherwise 

&,J = 0 otherwise 

6,' = 0 otherwise 

{ I 2 }  4 n ( n - 1 )  & 2 , + 1 , 2 L + 2 ~ R  O < i c [ 4 n - l I  

t n ( n +  I )  + , , E R  O s i s n  

ti; 1 1  n 2 - 1  & : E R  O S i S n  

( n  + k -  l ) !  
k ! ( n - l ) !  4L2 , E R  

4,t 8 J = 0  i < i  
&,J E C otherwise 

S U ( n )  t l }  n as U( n )  
{ I 2 }  + n ( n - 1 )  as U( n ) ,  except if n even when 

121 + n ( n + l )  as U ( n ) ,  except E C 
ti; 1) n 2 - 1  as U ( n )  

412E C 

( n  + k - I ) !  
k !  ( n - I ) !  

as U ( n ) ,  except 4"" E C 

SO( n )  1 1 1  n as U( n )  
[ I 2 ]  t n ( n  - 1 )  as U ( n )  
[21 i n ( n + l ) - l  as U ( n )  and x & , , = O  
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and since the action of G is orthogonal, 

(g ' 494) = (4 ,  g-' * CL).  (2.3) 
The elements of T(G), the Lie algebra of G, are n x n antisymmetric matrices and 

the action of 2 ( G )  on R" will also be written 

t .  4, t E T ( G )  4 ER". (2.4) 
The following rather general definition of a canonical form will be used. 

Definition 1. Let V be a representation space for a compact Lie group G, and Vc be 
a subspace of V. If V, intersects every orbit of the action of G on V at least once, 
and if V, contains no proper subspace with this property, then V, is a canonical form 
for the action of G on V. In other words any vector in V may be 'rotated' to lie in 
VC . 

It is well known that the normal space to any point 

N(4) = {x E R"  1 (x, Z ( G )  . 4)  = 01 (2.5) 

intersects every orbit of G. The normal space to any point on the generic stratum has 
the minimal dimension property, and so is a canonical form. Unfortunately, in general, 
this method of choosing V, produces a complicated set of constraints, and there is 
also the problem of finding a suitable point on the generic stratum. 

These difficulties may be overcome by systematically removing the freedom associ- 
ated with the G transformations using the following algorithm. 

(i) Choose a vector 4 ' ~  V. This vector will eventually form part of the basis for 
V,, and typically 4' will be chosen to have one non-vanishing component. Note that 
the length of 4 '  is arbitrary. 

(ii) Find the generators of G that annihilate 4'. Call the group they generate G'. 
(iii) Eliminate all vectors in V of the form t .  4', t~ Y ( G ) .  Call the remaining 

(iv) Choose +'E N'. 
(v) Find the generators of G' that annihilate 42. Call the group they generate G2. 
(vi) Eliminate from N'  all components of the form t -  C$2,  t~ 3'(G'). Call the 

(vii) Return to step (iv) (with a suitable relabelling of 1 and 2). 
This process is repeated until all possible choices of 4k+' are annihilated by Z ( G k ) .  
For a proof that this algorithm yields a canonical form see the appendix. Note 

As a trivial example consider the symmetric second-rank tensor representation of 

(i) Choose 4 '  to have non-zero component c$~,. 
(ii) Using the notation (1); = SLS:, Z(G')  is generated by (i) - (i). 
(i i i)  412 and d13 are eliminated by the generators (i) - (;) and (i) - (;) respectively. 
(iv) Choose + 2  to have non-zero component C $ 2 2 .  
(v) 2'(G2) is trivial. 
(vi) C$23 is eliminated by (:) - (:). 
(vii) Since all the generators have been used the algorithm ends here. 
Thus all off-diagonal terms have been eliminated, and the standard canonical form 

for this case is obtained. Note though that because of the arbitrariness in choosing 
the 4 '  non-standard canonical forms can also be found if necessary. 

space NI. 

remaining space N 2 .  

also that Gk is the identity component of a generic little group. 

SO(3). 
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The case of complex representations may be included by writing them in a real 
form (Abud and Sartori 1983), and in this way all the standard forms listed in table 
1 may be reproduced. It is also possible to find a very simple canonical form for the 
kth-rank totally symmetric tensor representation of U(n)  and SU(n).  This form is 
included in table 1. 

In the case of any other tensor representations it does not seem to be possible to 
find forms that are valid for all values of n, but it is of course possible to use the 
algorithm to find a form in any particular case. The forms for totally antisymmetric 
third-rank tensor representations are given in table 2 for n 6 7, and these will be used 
in the next section. 

3. Application to symmetry breaking produced by third-rank antisymmetric tensors 

It was shown in Cummins and King (1984) that sufficient conditions for 4 j j k  to be an 
absolute minimum of 

\ 2  

(3.1) 

where ( + , j k ) *  = 4yk are 

4 is non-zero, say 4123; 
( I )  if -3Al < A 2  < 0, then (after a suitable transformation) only one component of 

(11) if A2>0 and n h l + h 2 > 0 ,  then I:, 4,jr$yka6:. 
These conditions do not fix 141 which must be determined by substitution into (3.1). 

In general for other values of A I  and h2 the potential is not bounded below. 
In case (I)  the symmetry breaking pattern is easy to compute. In case (11) the 

cosstraint may be solved using the canonical forms of table 2. In fact for n = 4,5 the 
constraint has no solutions, but these cases are easy to solve explicitly. The results of 
all these calculations are shown in table 3. 

Table 2. The canonical forms for third-rank totally antisymmetric tensors for U (  n ) ,  SU( n )  
and S O ( n ) ,  n 6 7 .  

n Canonical form U ( n )  S U ( n )  W n )  
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Table 3. The symmetry breaking patterns produced by the Higgs potential for third-rank 
totally antisymmetric tensors. Note that the cases n = 4, 5 do not satisfy the constraint of 
case (11) (and consequently the boundedness condition is less strict in these cases), but 
they are included here for convenience. 

( a )  Case (1I)for U ( n ) .  

n Little algebra Embedding in U(n) Example of minimising vector 

4 SU(3) + U(1) i l l  + {l}o  + {OIL ,  dl23 ’ 
5 SP(4) + U( 1 )  {1}+(1)1+(0)-2 4 1 2 s :  4J345 1 1 
6 SU(3)+SU(3)  { 1) + {I} x io} + {O} x { 1) 4 1 2 3 :  4456 : 
7 G2 { I ) +  (190) 123 : 145: 167 :246: 357 1 : 1 : 1 :h:& 

To obtain the SU(n) case, delete the U(1) factor. 

( b )  Case (11) for  SO(n). 

n Little algebra Embedding in SO( n )  

The examples of minimising vectors for S O ( n )  may be taken to be the same as those for U ( n ) .  

(c )  Case ( I ) .  

It should perhaps be stressed that we have calculated the little algebra (the Lie 
algebra of the little group) for the various minima using the condition 

( t  * 4 ) i j k  = ( t ? + m j k  + t j ” d i m k  + t r  4 i j m )  = 0 (3.2) 
m 

for t E Lf(G,). In some cases, however, the little group may not be connected (Abud 
et a1 1984, Burzlaff et a1 1985, Cummins and King 1986). 

The results are in agreement with Jetzer et a1 (1984) and Cummins and King (1984); 
they also establish the uniqueness of the symmetry breaking patterns. 

For n 2 8 the constraint (11) becomes too complicated to solve by hand, although 
some progress could probably be made using algebraic computing. 

For n = 8 one possible solution to (11) is given by choosing 4 i j k  =Ajk ,  the structure 
constants of SU(3). This produces the pattern 

G + SU(3) (3.3) 

where G = U ( 8 ) ,  SU(8) or SO(8). Since in each case condition (11) contains more 
constraints (albeit non-linear) than degrees of freedom in the canonical form it seems 
reasonable to conjecture that (3.3) is the unique symmetry breaking pattern for this 
case. When n 29, however, it is possible to show that the solutions of (11) do not 
yield unique symmetry breaking patterns. 
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Figure 1. The boundary of the region R defined by equations (3.6) and (3.7). The 
corresponding vectors are given by: A, +123 : +456 1 : 1; B, bL23 : 4456 1 : 1; C, +123 # 0; D, 
+ 1 2 3 :  b456 1 : t ;  E, I # I ~ ~ ~ :  +456 1 : exp tint; F, +123  : +456 1 : i f ;  where O <  t < 1. In all cases the 
little algebra of a 0  is SU(3)+SU(3). 

In the case of SU(6) it is not in fact true that (3.1) is the most general Higgs 
potential. This is due to the existence of the additional fourth-order invariant 

where 

(3.4) 

(3.5) 

and 
h 3 €  C 

Furthermore the conditions ( I )  and (11) do not apply when this term is included 
in the potential. 

To find the symmetry breaking pattern in this case first note that by redefining 4 
we may choose A 3  to be real. The problem now reduces to finding the absolute minimum 
of a potential with three quartic and no cubic terms. This type of minimisation has a 
simple geometric interpretation (Kim 1982) in terms of finding the 'most peripheral' 
parts of the boundary of the closed bounded subset, R, of R2 defined by 

I \ - 7  

(3.7) 

Using the canonical form for SU(6), X and Y depend on only seven real parameters 
so that it is not difficult to determine by choosing many random values for these 
parameters and plotting the results using a computer. The result is shown in figure 1. 
Somewhat surprisingly the symmetry breaking patterns are the same as those when 
(3.3) is absent, namely SU(6) + SU(3) + SU(3). 

4. Conclusion 

In 0 2 a method has been given for constructing simple canonical forms of tensor 
representations of compact Lie groups. These forms simplify the explicit minimisation 
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of Higgs potentials and this is illustrated in 0 3 where the forms for third-rank 
antisymmetric tensors are used to establish unique symmetry breaking patterns for 
U ( n ) ,  SU(n) and SO(n) for n S 7 .  

It should be noted that there are, of course, many other examples of cases which 
involve tensors transforming as representations other than vector, second-rank or 
adjoint, and the construction of simple canonical forms should prove useful for explicit 
calculations in these cases. 
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Appendix 

In this appendix we give a proof that the algorithm of § 2 does indeed give a canonical 
form. First consider any sequence { 4 k }  where 4 E R " V k  E Z and 4' = 0. 

Dejnition 2. G+k = {g E Glg 4 k  = 4 k }  (the little group of 4 k ) .  

Dejnition 3. Define G k  by 
( i )  G O = G  

(ii) G k  = G$k n G k - ' .  

Dejnition 4. Define N k  by 
(i) N'=R" 
(ii) N k = { 4 ~  Nk- ' I (q5 ,2 (Gk- ' )*  4' )=0} .  

It will be seen that these definitions are in agreement with the notation used in the 
algorithm. In order to show that N k  intersects all orbits the following two lemmas 
are needed 

Lemma 1 .  V k ,  G k *  N k =  Nk 

Proof by induction. If 4 E N k  c N k - ' ,  and g E G k  c Gk-' ,  then 

( g .  4, Y ( G k - 1 ) 4 k ) = ( 4 ,  g-'2'(Gk-')gg5k)=(4, 2(Gk- ' )q5k)=0 (AI) 
and also by the inductive hypothesis 

g 4 E Gk-' . Nk-' c N k - ' .  

So from definition 4, using (Al)  and (A2) 

g *  4~ N k .  (A31 
Clearly the case k = 0 is trivial, and the lemma follows. 

Lemma 1 means that N k  is a representation space for Gk,  and so G k  orbits on N k  
are well defined. This fact we need to show is the following. 
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Lemma 2. If Rk c N k  is a Gk orbit on N k  then R k  n Nk+' # 0. 

Proof (following Abud and Sartori). Let 

d(Rk, $J~+') = ::rrfk 14 - 4k+'12. 

Rk is compact, and hence there exists ,y E Rk such that 

d(Rk,  = Ix - 4k+1/2.  

fk) = 2 ( g *  x, 4k+1)  
Consider f :  Gk + R defined by 

= lg x - C$k+'l*+ I # +  \@+'I2 

= - d ( g .  x, +k+')+constant. 

By the definition of X,f(g) has a maximum at g = e so that 

O =  (2'(Gk)x, 4k+' )  
= (x, 2(Gk)4k ' ' ) .  

Hence from definition 3, x E Nk+' and so Nk+' n Clk # 0. 

Using this lemma it is easy to show the following. 

Proposition 1. If R is a G orbit on R", then R n N k  # 0 V k .  

Proof by induction. By hypothesis we may choose 9 E R n N k - ' ,  and from lemma 2 
we may choose p E a"-'(*) n N k .  But clearly p = h 9 for some h E Gk-' c G, and so 
pER(9 )n  N k = R n  N k .  

The case k = 0 is trivial and so the proposition follows. 

All that remains to be shown is that the final N k  satisfies the minimum dimension 
requirement. To show this we first need the following lemma. 

Lemma 3. dim N k  = dim V- dim G + dim Gk V k .  

Proof: It is well known that for any compact Lie group H acting on a representation 
space W, the following is true: 

('48) V 9 €  w, 

that c $ ~  E Nk-'  we have 

dim N ( 9 )  = dim W - dim H + dim HB. 

Applying this result to the action of Gk-' on N k - ' ,  using lemma 1 and the assumption 

dim N k  =dim Nk- ' -dimGk- '+dimGk- 'nG+k 

= dim Nk-'  -dim Gk-' +dim Gk ('49) 
and the lemma follows by induction. 

Now let d be the dimension of a generic little group and q be the dimension of a 
generic normal space (which is also the dimension of the orbit space). It may be 
shown that 

('410) dim N k  2 q. 
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If it is also the case that Gk leaves N k  pointwise fixed, then since N k  contains generic 
points 

dim Gk S d (A1 1 )  

and so using (A8) 

dim Gk q -dim V+dim G 

and from lemma 3 

dim Nk S q 

so that 

dim N k  = q. 

Thus we have shown the following. 

Proposition 2. The algorithm produces a canonical form. 

It also follows immediately that 

dim Gk = d 

so that Gk is the identity component of some generic little group. 
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